Leetcode 64. Minimum Path Sum
Question Description
Original Question: Leetcode 64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Solution
- Java
- Python
class Solution {
public int minPathSum(int[][] grid) {
if(grid.length == 0 || grid[0].length == 0) return 0;
int[][] dp = new int [grid.length][grid[0].length];
for(int i = 0; i<grid.length; i++){
for(int j = 0; j < grid[0].length; j++){
if(i==0 && j==0) dp[i][j] = grid[0][0];
else if(i==0) {
dp[i][j] = grid[i][j] + dp[i][j-1];
} else if (j == 0){
dp[i][j] = grid[i][j] + dp[i-1][j];
} else {
dp[i][j] = grid[i][j] + Math.min(dp[i-1][j], dp[i][j-1]);
}
}
}
return dp[grid.length-1][grid[0].length-1];
}
}
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
if not grid or not grid[0]:
return 0
m,n = len(grid), len(grid[0])
minSum = [[0 for j in range(n)] for i in range(m) ]
minSum[0][0] = grid[0][0]
for i in range(1,m):
minSum[i][0] = minSum[i-1][0] + grid[i][0]
for j in range(1,n):
minSum[0][j] = minSum[0][j-1] + grid[0][j]
for i in range(1,m):
for j in range(1,n):
minSum[i][j] = min(minSum[i-1][j], minSum[i][j-1]) + grid[i][j]
return minSum[m-1][n-1]