LC310. Minimum Height Trees
Problem Description
https://leetcode.com/problems/minimum-height-trees/
For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1 :
Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
Output: [1]
Example 2 :
Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
Output: [3, 4]
Solution
- Java
- Python
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> toRet = new ArrayList<>();
if (root == null) return toRet;
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
int count;
boolean leftToRight = true;
while(!queue.isEmpty()){
count = queue.size();
ArrayList<Integer> level = new ArrayList<>();
for (int i = 0; i < count; i ++){
TreeNode node = queue.poll();
if(leftToRight) {
level.add(node.val);
} else {
level.add(0, node.val);
}
if(node.left != null){
queue.add(node.left);
}
if(node.right != null){
queue.add(node.right);
}
}
leftToRight = !leftToRight;
toRet.add(level);
}
return toRet;
}
}
class Solution(object):
def findMinHeightTrees(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: List[int]
"""
graph = collections.defaultdict(set)
for u,v in edges:
graph[u].add(v)
graph[v].add(u)
leaves = { i for i in range(n) if len(graph[i]) <= 1 }
newLeaves = set()
rn = n
while rn > 2:
for l in leaves:
rn -= 1
for parent in graph[l]:
graph[parent].remove(l)
if len(graph[parent]) == 1:
newLeaves.add(parent)
leaves = newLeaves
newLeaves = set()
return list(leaves)